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ABSTRACT

We consider the optimum design of photon-counting microlaser altimeters operating from

airborne and spacebome platforms under both day and night conditions. Extremely compact Q-

switched microlaser transmitters produce trains of low energy pulses at multi-kHz rates and can

easily generate subnanosecond pulsewidths for precise ranging. To guide the design, we have
modeled the solar noise background and developed simple algorithms, based on Post-Detection

Poisson Filtering 0aDPF), to optimally extract the weak altimeter signal from a high noise

background during daytime operations. Practical technology issues, such as detector and/or
receiver dead times, have also been considered in the analysis. We describe an airbome

prototype, being developed under NASA's Instrument Incubator Program, which is designed to
operate at a 10 kHz rate from aircratt cruise altitudes up to 12 km with laser pulse energies on the

order of a few microjoules. We also analyze a compact and power efficient system designed to

operate from Mars orbit at an altitude of 300 km and sample the Martian surface at rates up to 4.3

kHz using a lwatt laser transmitter and an 18 cm telescope. This yields a Power-Aperture Product
of 0.24 W-m 2, corresponding to a value almost 4 times smaller than the Mars Orbiting Laser

Altimeter (0.88 W-m2), yet the sampling rate is roughly 400 times greater (4 kHz vs 10 Hz).

Relative to conventional high power laser altimeters, advantages of photon-counting laser

altimeters include: (1) a more efficient use of available laser photons providing up to two orders

of magnitude greater surface sampling rates for a given laser power-telescope aperture product;
(2) a simultaneous two order of magnitude reduction in the volume, cost and weight of the

telescope system; (3) the unique ability to spatially resolve the source of the surface return in a

photon counting mode through the use of pixellated or imaging detectors; and (4) improved
vertical and transverse spatial resolution resulting from both (1) and (3). Furthermore, because of

significantly lower laser pulse energies, the microaltimeter is inherently more eyesafe to
observers on the ground and less prone to internal optical damage, which can terminate a space

mission prematurely.



1. INTRODUCTION

Spacebome laser altimeters typically use modest energy (50 to 100 mJ) solid state lasers, large

telescopes (50 to 100 cm diameter), and high detection thresholds to achieve unambiguous

surface returns with few or no "false alarms" resulting from solar background noise [Abshire et
al, 2000; Dubayah et al, 1997; Ramos-lzquierdo et al, 1994]. As a result of this conventional

design philosophy, spacecraft prime power and weight constraints typically restrict operations to

low repetition rates on the order era few tens of Hz which, at typical planetary orbital ground

velocities era few Kin/see, limits along-track spatial sampling to one sample every few hundred
meters. There is great scientific interest in obtaining higher along-track resolution and/or better

cross-track coverage, but achieving this capability through a simple scaling of the laser fire rate
(power) is not practical. This is especially true of altimeters destined for orbit about distant

planets where instrument mass and prime power usage is severely constrained.

We will demonstrate in this paper that the conventional high Signal-to-Noise Ratio (SNR)
approach to laser altimetry does not make efficient use of the available laser photons. The surface

return rate of an orbiting altimeter can be increased by up to two orders of magnitude for a given

laser output power by emitting the available photons in a high frequency (few KHz) train of low

energy (< 1 mJ) pulses, as opposed to a low frequency train of high energy pulses, and by
employing single photon detection [Degnan and McGarry, 1998]. This mode of operation

reduces the risk of internal optical damage to the laser, thereby improving long-term reliability,
and makes the beam inherently more eyesafe to a ground-based observer. In addition, these high

return rates can be accomplished with much smaller telescope apertures on the order of 10 to 20

cm diameter. Indeed, the contrast of the terrain "signal" against the solar-induced noise
background is actually enhanced through the use of small receive telescopes. As we will

demonstrate, relatively simple onboard set, are algorithms, loosely based on post-detection

Poisson filtering techniques, previously used in hmar laser ranging [Abbott and Shelus, 1973],
can be employed to identify and extract the surface sampling data from the more abundant

background noise prior to onboard data storage or transmission of the data to a ground station.

The near order of magnitude reduction in telescope diameter greatly simplifies the mechanics of
scanned systems and allows the use of relatively inexpensive, modest diameter optical wedges or

holographic optical elements to simultaneously scan both the transmit and receive beams for
cross-track interrogation of the terrain while still maintaining narrow fields of view for

background noise suppression. In addition, since the volume and weight era telescope and its
support structure nominally varies as D _.3,where D is the telescope diameter [Minott, 1998], a

two order of maguitude reduction in weight and volume and a comparable reduction in
fabrication cost can be realized.

Further unique performance enhancements are also possible when operating in a photon-counting
mode. Commercial and developmental photon-counting detectors now exist which are capable of

providing centimeter level ranging resolution as well as angularly resolving the source of a single

photon event within the receiver field-of-view. These devices can be realized either as specially
designed high bandwidth photomultipliers [Charboneau et al, 1992; Ebstein et al, 1996;

Priedhorsky et al, 1996] or as Avalanche PhotoDiode (APD) arrays [Vasile et al, 1997]. With

high angular resolution of the single photon source, the measured range becomes nearly a point-
to-point measurement, i.e. from the internal altimeter reference point to a small area of
uncertainty on the surface, which is determined by the angular resolving power of the

photodetector and can be very small compared to the total beam area on the ground. The ranging
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precisionisnowlimitedbythelaserpulsewidth,thetimingcapabilitiesof therangereceiver,and
themuch-reducedresidualspreadingof thereturnwaveform,or"Poissongeneratingfunction"in
photoncountingmode,causedbysurfaceroughnessandslopewithinthissmallzoneof
uncertainty.Thisabilityto measurethenear"point-to-pointtime-of-flight"of an individual
photon removes much of the range ambiguity inherent in current high energy altimeters. In the

latter, multiple photons reflected from anywhere within the illuminated spot must be recorded by

power-hungry waveform digitizers and deconvoluted using complex (and often fallible)

algorithms in order to decipher the results and obtain a single range measurement.

We believe that the proposed microlaser altimeter, or microaltimeter, can address many of the
same Earth science issues as NASA's Earth Observing System (EOS) Geoscienee Laser Altimetry

System (GLAS) [Abshire et al, 2000] and Vegetation Canopy Lidar (VCL) missions [Dubayah et

al, 1997]. It is also an attractive successor to the highly successful Mars Orbiting Laser Altimeter

(MOLA) instrument [Ramos-Izquierdo et al, 1994], which is currently mapping the surface
topography of Mars with unprecedented accuracy from the Mars Global Surveyor (MGS)

satellite. Potential advantages of the microaltimeter approach include significantly greater spatial
resolution in either the along-track or cross-track directions (or both) as well as greatly reduced

demands on spacecraft resources such as prime power, volume and weight allocations, etc. This
will be demonstrated in analysis and simulations presented later. Potential microaltimeter targets

are the usual land, ice, and water surfaces as well as distributed or soft targets such as clouds,
planetary boundary layers, tree canopies, and other vegetation [Ho and Priedhorsky, 1995]. The
much-reduced signal levels of the microaltimeter relative to conventional altimeters are largely

offset by a corresponding reduction in the detection threshold to about one photoelectron so that
instrument sensitivity is largely maintained or even enhanced. As a result, geoscience applications

include the development of a high resolution, high accuracy topographic database of land surfaces
useful for studying hydrological runoff; the effects of clouds on radiation balance; changes in sea,

lake, or reservoir levels; changes in ice sheet thickness; tree canopy heights and biomass

assessment, etc. Applications to extraterrestrial science missions are both obvious and numerous

and include the low power, high resolution topographic mapping of other planets, moons,
asteroids, and comets within the Solar System. Commercial applications include aerial surveying

of cities and towns and/or the generation of local topographic maps from aircraft cruise altitudes
(7 to 12 km). Even with their higher pulse energies, conventional airborne laser altimeters

typically must fly at altitudes below 3 km, which usually requires a special waiver from
government aircraft authorities.

In Section 2 and the appendices, we develop the theory of operation for the microaltimeter.
Section 3 provides a brief technical description and performance simulations of a 10 kHz airborne

microaltimeter currently being developed under NASA's Instrument Incubator Program. Section 4
applies the theory to the design of a multi-kilohertz microaltimeter orbiting Mars, and Section 5

provides a brief summary of the results.

2. THEORY OF OPERATION

2.1 PHYSICAL MOTIVATION FOR TIlE "MICROALTIMETER"

The mean number of signal photoelectrons detected per laser fire by the receiver from a planar
Lambertian diffuse reflector which fills the receiver field of view (FOV) is given by the familiar

altimeter equation [Stitch, 1972].
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G =EP cos _27r/fLEe4' EtA_ PtA_
o_o j _ = C. n_ = C, fe_n 2

(la)

where Ca is the altimeter constant, h v is the laser photon energy, r/qis the detector quantum

efficiency, p is the surface reflectivity, r/r is the transmission efficiency of the receiver optics, cr is
the surface slope, Er is the transmitted energy, A, is the collecting area of the receiver, R is the

range to the surface, f_s is the Q-switching frequency, Ptis the transmitter power, and To is the
one-way atmospheric transmission along the altimeter nadir path given by

To = exp - dz/_(z)

\ h,

(Ib)

where h, is the height of the surface above sea level and It(z) is the altitude-dependent

atmospheric extinction coefficient. Solving forfQs in (la) yields

=[,o¢osoV:]'Tq''',A'
n , rchvR 2

(2)

If we assume that the receiver integrates over the entire surface return waveforrn, the frequency of

range returns per second is obtained by multiplying (2) by the probability of detection for a
Poisson process, i.e.

nine,)fR= fQsp_9(G,n,)= fm _ 1 1-e-"_"_.
k=O

(3)

where ntis the receiver detection threshold in photoelectrons, and the maximum surface return
rate is defined by

(4)

where we have divided the latter expression into two factors, a target/atmosphere dependent term

and a term which depends solely on instrumental characteristics. A normalized plot of Eq. (3) in

Figure 1 demonstrates that, for a given laser power - receive aperture product, the maximum
surface return rate is obtained by adopting a single photon detection threshold (no=l) and a low
mean signal strength, i.e. n, < 0.1. Physically, this implies using a high repetition rate, but low

energy, laser transmitter, but clearly the effects of background noise must be taken into account m
systems designed to operate under both day or night conditions from orbit. Our prototype

airborne system, described in Section 3, proposes to use gated visible detectors, which are

typically characterized by relatively low dark count rates, and the frequency-doubled Nd:YAG
wavelength of 532 nm. Thus, scattered solar radiation, both offthe viewed surface and the

intervening atmosphere, will be the dominant source of instrument noise during daylight

operations.



2.2 CORRELATION RANGE RECEIVER

A correlation range receiver (CRR) can be used to distinguish weak signals from background

noise counts during daylight operations [Degnan and McGarry, 1997]. The CRR measures photon

time-of-flight at multi-kilohertz rates relative to the outgoing pulse, and, in spacebome or very
high repetition rate airborne applications, must be able to handle multiple pulses in flight. With

each laser fire, the CRR is gated to accept only those photons which enter the receiver during a

time period in which surface returns are expected. It can also record multiple photon "stop"
events which occur within the range gate. Software within the CRR breaks each range gate

(along the vertical range axis) into a set of equal duration range bins as in Figure 2. A set of

sequential laser fires along the horizontal (time) axis forms aflame. The range bin width, r_ in
the CRR is chosen to accommodate all likely signal photon arrival times from a single surface

occurring within a frame as defined by afrarae sampling interval, r_. The 2-D area defined by the

horizontal range bin and vertical frame boundaries respectively in Figure 2 is called a cell. A set
of M contiguous frames is a superframe. Figure 2 shows a superframe consisting of 10 frames.

The terrain is shown as a solid black line passing through the various cells.

Software in the CRR tentatively identifies the signal cell by summing the counts in each cell and

comparing the total to a frame threshold value, K_,, which is optimally chosen based on Poisson
statistics (see Section 2.5). If the count exceeds the threshold, the cell is tentatively identified as

containing signal (the gray cells in Figure 2); otherwise, it is tentatively identified as containing

noise (the white cells in Figure 2). Figure 2 also illustrates a situation where a steeper than

average surface slope or highly modulated terrain causes the signal counts in a frame to fall into
two or more cells with the result that none of these cells achieve frame threshold as in frames 3,

7, and 8. It is also statistically possible that a noise cell is occasionally mistakenly identified as

signal. Under these weaker signal to noise conditions, further confirmation of signal acquisition

can be obtained, if necessary, by applying an N ofMtest Fritterton et al, 1998] to the data which
requires that, in N elM successive frames making up a superframe, a cell (1) passes the threshold

test and (2) is displaced from signal cells in adjacent frames by no more than one range bin in the

vertical (range) direction. We refer to this condition as a valid trajectory. A sample of a valid
trajectory, in which the signal cells exceed threshold in 7 of 10 frames, is also illustrated in Figure
2.

More sophisticated tracking algorithms, which look forward and backward along the time axis,
are also possible and can further improve the accommodation of steep or rapidly modulated

terrain features and recover missing data. For example, looking forward in time and using our

adjacent range bin criteria, the lost signal in frame 3 is expected to occur in bin 4,5, or 6 (cells
with upwardly sloped lines) since bin 5 was identified as the signal in Frame 2. However, looking

backward in time from frame 4 suggests that bins 6,7, and 8 are the likely candidates in Frame 3

(cells with downwardly sloped lines). The only cell common to both the forward and backward
groupings in Frame 3 is bin #6 (cross-hatched), which in reality contains most of the signal.

As a second example, we consider Frames 7 and 8 where the signal cell goes undetected in two

consecutive frames. Looking forward in time from Frame 6 suggests the signal may be m bins 6
through 8 in frame 7 and bins 5 through 9 in Frame 8. Looking backwards in time from Frame 9,
however, suggests bins 4 through 6 in Frame 8 and 3 through 7 in Frame 7. The overlapping

(cross-hatched) bins are 6 and 7 in Frame 7 and bins 5 and 6 in Frame 8, which indeed contain the

missing signal counts. While very abrupt changes in terrain (such as a steep cliff) can cause the

signal cell to jump many range bins in a single frame and violate our + one bin criteria, we will
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demonstratein latersimulationsthatthealgorithmquicklyidentifiesthesurfaceatthenew
elevation.

Surfaceslopeand/orroughnesswithintheinterrogatedsurfacearea, A_, will produce a return

waveform (or, in the case of photon counting, a Poisson generating function) that is significantly
broadened relative to the initial laser pulsewidth, which is typically on the order of a nanosecond.

Distributed targets, such as clouds or ground vegetation, also produce broadened returns and, with

a properly designed receiver, are detectable using photon counting instruments [He and
Priedhorsky, 1995]. Multiple returns from different entities - e.g. cloudtops, tree canopies,

and/or ground returns - can also occur on a single laser pulse, potentially causing several CRR

cells, widely separated in range, to record valid returns.

2.3 SOLAR NOISE BACKGROUND

From equations (A7) and (Ag) in Appendix A, the mean number of background noise counts
generated within a given range bin by scattered solar radiation is given by

nb = flA'rb = EN_ (A2)'(l"rl' ];r/e_'A" ][p_1+'_'L_v c°s v -t 4(!1- --T_"_°']+ secR s ) J
(5)

where the first and second terms respectively correspond to the noise counts per range bin due to

scattered solar radiation from the surface under study and the intervening atmosphere. In Eel. (5),

which is a generalization of Eq. (18) in [Stitch, 1972], 13is the combined noise count rate per unit

area of receive aperture, N ° is the wavelength-dependent solar spectral illuminance as measured

just outside the planetary atmosphere (N_° =0.2 watts/m2-A ° at 532 nm for Earth), A2 is the

spectral filter bandpass, _ is the the receiver field of view (FOV) in steradians, rbis the duration

of the range bin, V/is the subtended angle between the Sun and the surface normal, and 0s is the

solar zenith angle at the time of the measurement. It is also shown in Appendix A that

cos_ = coscr cos 0 s + sin cr sin 0s cosrp (6a)

where q_is the angle between the plane containing the altimeter line-of-sight and the Sun (x-z

plane) and the plane containing the altimeter line-of-sight and the surface normal as in Figure 3.
Since 1 _>cosrp >_-1, we have the condition

cos(o- 0,)_>cos >_cos(°+o,) (6b)

where cos_ has the maximum value of 1 when rp = 0 and o-= O, and a minimum value of 0 when

the surface is in shadow (cos _,< 0).

2.4 INSTRUMENT CONTRAST AND SCALE ENERGY

Using (1) and (5), we can define an instrument contrast

C- Nb+N_ -1+ fQsrsn` - l+n" = lq Er

No fesrlnb "b E_
(7a)



wherewe have assumed single photoelecton detection, Nz =fq:: is the number of laser fires per

frame, and n, and nb are the mean signal and noise counts per range bin per laser fire
respectively. The contrast is equal to the ratio of total mean counts in the signal cell to the mean

background counts collected within any other noise cell in the CRR. We have also defined a scale

energy given by

i (i-Vo'+=°,)]E' =[N '(AA)i 'R2rbseecr]z i+s- cO _]
(7b)

as that transmitted single pulse energy which produces the same mean signal count in a properly

sized cell (i.e. one containing all of the expected mean surface returns within a frame) as the solar
noise background produces in any other arbitrary cell and which in turn produces a cell contrast

of 2. The scale energy is independent of other details related to the instrument, atmosphere, or

surface properties since these will have an equal scaling effect on both signal and background
noise and hence will not affect the contrast. We note from (7b) that the scale energy varies

quadratically with range and linearly with both the receiver solid angle FOV and the range bin
duration.

In the limit as T0---}l (relevant to an altimeter orbiting an airless moon or asteroid), (To) reduces
to the simple expression

= N_A2D,R rb seccr cosy _<N_A,L.Q,R r b seccrEsc 0 2 0 2 (8)

Assuming a ground spot diameter of-25 meters (corresponding to a 10 arcsecond laser beam at
an orbital altitude of 500 Kin), a modest filter bandpass of-3A °, a range bin of-200 nsec, and no

surface slope (o=0), the scale energy is less than 120 p.l, or almost 3 orders of magnitude smaller
than the 100 mJ GLAS transmitter pulse energy. For a relatively steep surface slope of 70 °, the

scale energy is increased by roughly a factor of 3 to 360 laJ. We will demonstrate shortly that a
transmitted energy 2 to 3 times the scale energy is usually adequate to achieve high reliability

discrimination of the surface returns from the worst case solar background. Thus, Earth mapping
missions using less than 1 mJ of transmitted energy are feasible in photon counting mode.

In order to compute the maximum scale energy inthe presence of a scattering atmosphere, we
will find it useful to introduce the variables

1 1

co - -oTl+_°" Toz < co< oe (9a)

and

1 ln( 0)  9b,a - 4p cos 9'

which, when substituted into (7b), yield
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o 2

E,_ = Nx A2,QrR r_ sec cr
To2 cos_' co

co-1
l+a--

lnco
(10)

Setting the derivative of (10) with respect to co equal to zero

N_tA2_,R r b sect7dEs_.._.___¢_ 0 2

d_ To2 -ln co + a(lnco -co+ 1)} __0cos V co2 in 2 co
(11)

suggests a single extremum at _ =1. However, since E_ and its derivative are both indeterminate,
we must make repeated use of L'Hospital's rule to obtain

= cosv 4p k )l
(12a)

and

limdE'¢_,_,dco= N_AZf_R2 rb sec°"[_ cos V + _ml.pInkL0jj(+l]
(12b)

Since the derivative (12b) is negative, the extremum at co = 1 is a maximum. Thus, substituting

= 1/To 2, the smallest possible physical value of co m (9a), into (10) yields an upper limit for the
scale energy, i.e.

[ '('E,_<N_A2.Q,R2rbseeo l+_p[,._- ).j
(13)

which correctly reduces to the surface-only expression (Sb) as To--_l. Thus, the effect of the worst
case atmospheric scatter is to increase the maximum scale energy by more than a factor of 2 for

low reflectivity surfaces that satisfy the condition

p< -1 (14)

which, for typical atmospheric transmissions at 532 nm (To > 0.7), primarily affects surfaces with
reflectivities less than about 0.13.

2.5 DISCRIMINATING SIGNAL FROM NOISE WITH POST-DETECTION POISSON ANALYSIS

To achieve a maximum surface return rate during daylight operations of the altimeter, the
transmitted energy must be sufficiently greater than the scale energy to permit successful

discrimination of the surface against solar background noise within a reasonable frame interval,
i.e. there must be sufficient contrast as defined by (7). On the other hand, the contrast should not

be so great as to unnecessarily limit the pulse repetition rate (and hence surface sampling rate) for



agivenlaseroutputpower.Inanycase,weareinterestedin designinga CRRwhichcan
effectivelyidentifysignalcellsunderconditionsof relativelylow ormodestcontrast(C_>3).

Since the system parameters must be chosen such that the mean noise count per range bin per

laser fire is significantly less than the mean signal count per laser fire (which is also on the order

of unity or less for efficiency reasons as previously described in Section 2.1), usually no more

than one photon count (signal or noise) is accumulated in any given cell per laser fire. On the
other hand, the total number of noise counts observed within the range gate per laser fire may be

significantly greater than one since, although the probability of detecting a noise count in a given

range bin is small, there can be a large number (hundreds to thousands) of range bins if the range
gate (range uncertainty) is large. Furthermore, the requirement that the noise count per bin be

much less than the mean signal count (<1) places a constraint on the maximum telescope aperture

that can be employed in daylight operations to reach the necessary power-aperture product for a
given surface sampling rate, although this limit can be relaxed somewhat by improved spatial and

spectral filtering.

From Poisson statistics, the probability that we will correctly identify and acquire the signal cell

in a given frame is

K-I (CNb ) k
P_,_ P(N, > K) 1-e -N'K-_

N k

= _ = _= --_-.) -1' - -e-C:v'__,=0 k, (15a)

where Nt = N, +Nb = CNb is the total mean photoelectron count, equal to the sum of the mean
signal and background counts in the cell, and K is the frame count threshold. Similarly, the

probability of falsely identifying any given noise cell as "'signal" is equal to

E-1 k

P:_, : P(N b > K)= 1-e -N__ N:,
k:o k!

(15b)

Now, the mean number of noise cells per frame falsely registering a signal is given by

where Nb_. = rg / r b is the number of range bins within the range gate. Thus, for the M frames

making up a superframe, we can define a differential cell count

x-l(CNb)'N(K)- MEP_ - Nb,.Py,,,,._ = M l--e-CN_--" k!
k=O

which subtracts the expected mean number of falsely acquired noise cells from the expected mean

number of true signal cell acquisitions occurring within a superframe.

Choosing a frame threshold K in (17) that is too small will result in too many noise cells being
falsely identified as signal and will drive the differential cell count to small (<<M), or even

negative, values. On the other hand, choosing a threshold that is too high will reject many valid
signal cells, along with the noise cells, and drive the differential cell count toward zero. We

therefore pose the question - what integer frame count threshold, K, maximizes the differential



cell count7 To obtain the answer, we perform a quasi-differentiation with respect to the frame
threshold, K, on (17), i.e,

aNax- N(K+1)-N(K)-N:e-N'X![,Vb,.-C'e ] (18)

Setting the latter expression equal to zero and solving for K gives a simple formula for the

optimum frame threshold, Kopt

_ (C-1)Nb +ln(N_..)- Ns + In(N_,,,,)

K°P' - lnC - lnC (19)

The threshold Kort maximizes the differential cell count since it can be similarly demonstrated,
using (17)through (19), that the second "quasi-derivative" has a value less than zero for C > 1,
i.e.

A2N=N(Koz+I)-2N(Ko.,,t)+N(Koz-1)= 1- <0
AK 2 (Koz - 1)! '

(20)

One can now use (19) in (17) to eliminate Nbi, in the expression for the optimized differential cell
count and obtain

Noz =M 1-CX"'e -(c-t)u' -e -cN' _ k!
k=0

(21)

Using (21), we can further show that, in the extreme contrast limits,

lim Now = 0 (22a)
C--}l

and

lim N o_ = M 22b)

Thus, since Nopt is always positive for the optimized threshold, the mean number of correctly
identified signal cells always exceeds the number of falsely acquired noise cells and hence the

latter can never exceed a mean of one per frame or M per superframe since that is the maximum
number &allowed signal cells, One can substitute the optimum threshold (19) into (15) and (16)

to compute the probabilities of correctly identifying the signal cell, the probability of falsely
identifying a noise cell as signal, or the mean number of noise cells per frame which exceed the
optimized threshold. As we will demonstrate later in the numerical analyses of airborne and

spacebome altimeters, one can usually drive the differential cell count arbitrarily close to the

ideal value M (i.e. there are M correctly identified signal cells in a supefframe and zero false
acquisitions) by choosing a sufficiently long frame interval.
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If we correctly select the signal cell and reject the other cells, the fraction of noise counts retained

by the instrument is l/Nb,,. Within the signal cell, 1/C of the counts are expected to be noise

counts on average. In Figure 4, we plot the differential cell count (normalized to M), the
probability of detection, and the mean number of false alarm cells per frame as a function of the

mean number of signal counts in the frame (Ns) for Nb_, = 100 (i.e. noise retention rate = 1%) and

four values of the contrast, i.e. C = 3, 5, 10 and 20. As expected, at higher contrast, fewer signal

counts per frame are required to positively identify the signal cell and reduce the number of false
alarms to an insignificant level. We further note from the figure that, for Ns > 40 and all of the

contrast values considered, the normalized differential cell count and probability of correctly

detecting the signal cell are virtually indistinguishable from unity and the mean number of false
alarms is less than one per thousand frames. Assuming different values for N_, in the range from

20 to 500 only changes the plots in the region of small Nsand does not significantly affect the

results for large N,. In summary, collecting about 40 signal counts per frame provides excellent

discrimination over a wide range of signal cell contrasts (C > 3).

2.6 CHOOSING THE RANGE BIN AND FRAME INTERVAL

The choice of range bin and frame interval are intimately interconnected. The frame duration

cannot be made arbitrarily large (e.g., over a sloped surface) without eventually forcing a larger

range bin rb in order to retain all of the surface returns within a single cell. As can be seen from
(10), a larger range bin also implies proportionally larger scale energies, which reduces the cell

contrast for a fixed mean signal strength. In a worst case situation, where we are ranging off a

constant steep slope o for the entire duration of a frame, all of the signal counts observed during

the frame will always be contained within a single cell if we choose a range bin duration which is
twice as large as the total signal spread within a frame

rb = 2 ro +c( g + v_:r/)tancr = 2r, + 7z': (23a)

where c is the speed of light, Dg is the beam diameter on the ground, vg'lris the effective ground

velocity of the beam, r:is the frame duration, and r0 is the minimum temporal width of the single
pulse return waveform from a normal planar surface and is determined by factors such as the laser

pulsewidth, beam divergence, and detector impulse response. The single shot return waveform is
broadened relative to this minimum value by the local slope according to the equation

2Dg tan cr
_- = r 0 -} (23b)

C

The parameter

4v__" tancr 4(v e + 2_rRf, c_, tan_)tan cr
t'3"_ X

7 = = _.,c_
C C

is the rate at which the range bin grows with increasing frame length due to beam velocity and
surface slope effects. For an unscanned system, the effective ground velocity of the beam is equal

to the aircraft or spacecraft ground velocity, vs. Since a typical ground velocity for planetary
orbits is a few km/sec, the ratio vS_/c in Eq. (23) suggests that the range bin duration can be

between 4 to 5 orders of magnitude smaller than the frame interval for all but nearly vertical
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slopes(o z 90°). For typical aircraft cruise velocities on the order of 0.1 to 0.2 km/sec, the range
bin duration can be 5 to 6 orders of magnitude smaller than the frame duration.

If we include a scanning mechanism on the altimeter to obtain cross-track measurements of the

underlying terrain, the effective ground velocity of the beam can be significantly larger than the
ground velocity of the host vehicle, leading to an even larger range bin and a further reduction in

signal cell contrast. A relatively simple, although not necessarily optimum, scanning device is a

slightly wedged optical plate spun at a frequencyfican in front of the transmit and receive optics.
Because of the small optics (typically 10 to 20 cm) required for the microaltimeter, this is a viable

scanning approach and produces a circular ground pattem superimposed on the linear motion of

the aircraft or spacecraft. Since the frame interval is usually short compared to the circular scan

period, the maximum effective ground velocity occurs when the linear ground velocity of the
aircraft or spacecraft and the beam velocity due to the scan add vectorially as in (23c), where R is

again the range to the surface and _ is the angular deviation of the circularly-scanned beam from
nadir (half angle of the cone). Two counter-rotating optical wedges in series can be used to create

a variety of scan patterns, including a linear raster scan in the cross-track direction (same rotation
frequency and wedge angle but starting 180 ° out of phase in the along track direction).

2.7 WAVELENGTH FIGURES OF MERIT

Relative to 532 nm, the 1064 nm fimdamental Nd:YAG wavelength is known to have many

"natural" advantages for altimetry, such as generally higher reflectance from various types of soil
and vegetation, improved atmospheric transmission, and reduced solar background noise.

Furthermore, one pays an additional penalty (-50%) in converting infrared photons to the visible

via passive nonlinear crystals. However, it will now be shown, via two instrument figures of merit
(TOMs), that the much higher detector quantum efficiencies and narrower, high throughput

spectral filters available at 532 nm often makes the latter wavelength a better choice for the
microaltimeter.

 (nm)

1064

(APD)
532

(PMT)
532

(APD)

r/q To2 r/,hp
soil

.02 .88 1

.15 .64 .5

.40 .64 .5

.25

P
dry veg

.36

P
green

veg
.67

FOMm_
soil

.O05

FOM_

dry veg

.006

FOMe_

green

veg
.012

.15 .15 .1 .004 .004 .003

.15 .15 .1 .010 .010 .006

Table 1: Return Rate FOM as a function of wavelength for various surface types and

detectors and a clear atmosphere. Note that, except for green vegetation, the natural

advantages of the 1064 nm wavelength with regard to surface reflectance and atmospheric
transmission are largely overcome by the significantly higher quantum efficiency of
detectors at 532 nm.

The Return Rate FOM is the wavelength-dependent portion of Eq. (4), i.e.

FOM = %PTo q,h (24)
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where)_is thewavelength,qqisthedetectorquantumefficiency,p is thesurfacereflectance,Tois
theone-wayatmospherictransmissionatnadir,andrichis thesecondharmonicgeneration
efficiency(nominally50%).Table1showsthevalueoftheReturnRateFOMat both
wavelengthsforavarietyof scatterers(soil,dryvegetation,andgreenvegetation)anddifferent
detectortypes,suchasaPhotomultiplier(PMT)andthemoreefficientGeiger-modeAvalanche
Photo-Diode(APD).

Similarly,theContrast FOM is given by the wavelength-dependent portion of (7), i.e.

8pLVo,1 (25)

where Ak is the spectral filter WHM bandwidth, the factor of22 accounts for the reduced beam

divergence at smaller wavelengths for a fixed transmit aperture, and the parameter _ includes the
combined effects of surface reflectance and atmospheric transmission.

a(nm) Nd zVt
ang

1064 .06 8.0 I

(APD)
532 .20 1.5 15

(p rr 
532 .20 1.5 .5
(APD)

(
soil

.94

(
dry veg

95

_68

(
green

veg
.98

FOMc
soil

2.0

FOMc

green
veg

FOMc

dry veg

2.0

4.6

4.6

.68 .59 4.6

.68 .68 .59 4.6 4.0

Table 2: Contrast FOM as a function of wavelength for various surface types and detectors.

Note that the natural advantages of the 1064 nm wavelength with regard to surface

reflectance and solar background are more than overcome by the improved beam
divergence and narrower spectral filters available at 532 nm.

Table 2 illustrates that the Contrast FOM is roughly a factor of two higher at 532 nm, due to the

narrower spectral filters that can be fabricated and the narrower beam divergences for a given

transmit aperture. Except for green vegetation, the Return Rate FOM is comparable for both
wavelengths if one uses a nominal PMT but is about twice as large at 532 nm if one takes

advantage of higher APD quantum efficiencies in the visible. Therefore, for altimeters orbiting

planets other than Earth, 532 run would appear to be the wavelength of choice.

2.8 EFFECTS OF DETECTOR AND/OR RECEIVER "DEAD-TIME"

Following detection, real detectors/timing receivers usually experience a dead time, typically
ranging from a few to hundreds of nanoseconds, during which no further count will be detected.
Since signal photons from a high reflectance surface are bunched together tightly in time (often

within a few nsec), any dead time which is long compared to the return waveform would be

expected to limit the number of detected signal photons to one per laser fire (see Appendix B).
The corresponding cell contrast would therefore be much reduced relative to that predicted by Eq

(7a) for mean signal strengths substantially greater than unity.
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Different photon-counting detectors have vastly different dead time characteristics. Avalanche

Photo-Diodes (APD's) operated in the so-called Geiger-mode (also known as a Single

Photoelectron Avalanche Diode or SPAS)) trigger off a single photon and, following avalanche,
must be restored via active or passive quenching techniques [Cova et al, 1996]. The saturated

output ofa SPAD is suitably shaped for direct input into an event timer without an intervening

timing discriminator, and hence the effective dead time is the longer of the timing receiver dead
time or the detector quenching time which is typically 10 to 40 nsee depending on APD thickness

[Cova et al, 1996]. Since a photon entering a MicroChannel Plate Photo-Multiplier Tube

(MCP/PMT) only depletes the charge in a few microchannels in the proximity of the cathode
entry point, other photons (signal or noise) can be detected and amplified by the vast number of

remaining unsaturated channels. Similarly, conventional dynode chain PMT's usually require the

input of many photons to saturate the output. Hence, most photomultipliers have virtually no
internal dead-time, and the effective dead-time will generally be governed by the burst-mode

characteristics of the timing receiver.

It is demonstrated in Appendix B, that if the detector/receiver deadtime, ra, is longer than the

return waveform from the surface but shorter than the range bin duration (xb> xa, >'cO, the

expression for the minimum signal cell contrast becomes

(26)

In (26), both the signal and noise counts per range bin, ns and nb, depend linearly on the receive

aperture, As. In the small aperture (signal) limit, the contrast approaches a maximum value

lim C a = 1 + n s (27)
,4_ --,o //b

equal to the zero dead time result in (7a). However, in the large aperture limit, we obtain a
contrast less than unity, i.e.

limC a=l ra, (28)
AK-q'°° _'b

suggesting that, if we choose too large a telescope, the signal will be indistinguishable from the
noise regardless of the transmitted energy.

In designing a practical instrument (see Section 3), we will often choose n, > 1 in order to get a
high probability of detection per laser fire in single photon mode, making the exponential in (26)

small compared to unity. Thus, in the high signal limit, (26) reduces to

lim C a = 1 - r-_a+ 1 (29)
.,_,_ "rb tl b
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Asanticipated,comparing(29)with (27)demonstratesthatthereceivereffectivelydetectsat
mostonephotonin thesignalswarmasaconsequenceof havingadetector/receiverdeadtime
longerthanthereturnwaveformAnyadditionalsignalphotonsimpingingonthedetectorare
thereforewasted.Eq.(29)furtherindicatestheimportanceof maintainingabackgroundnoise
countperrangebin,rib, significantly less than unity.

Solving for nb in (27) leads to an expression for the receiver area that maintains the desired

contrast, i.e.

1

A"=p[,.
(3O)

where 13is the maximum background noise rate per unit area per unit time defined in (5).

Thus, reducing the receiver spectral bandwidth and spatial FOV to the maximum extent possible

is an imperative first step in designing an efficient photon-counting altimeter. This avoids
unnecessarily constraining the receive aperture and placing more of a burden on the laser

transmitter to achieve the required power-aperture product for a given mission. As we will
demonstrate in Section 4, the fundamental instrument parameters (transmitter energy, receive

aperture, detector QE, etc.) must be chosen based on achieving the required sampling rate from a
surface having a nominal worst case reflectance and slope. Over higher reflectance terrain or
more modest slopes, the sampling rate will approach a maximum determined by the laser fire

rate, fQs. We will demonstrate in later analyses that, over highly reflective terrain (e.g., snow or
ice), the increased solar flux from the surface can cause the noise count per range bin to rise to
unacceptable levels, leading to a severe reduction in signal cell contrast (due to receiver dead time

effects) in spite of the correspondingly higher signal levels. However, this can be accommodated

by the inclusion of an actively controlled attenuator in the receiver to maintain system contrast
and mimic the returns from a lower reflectivity surface.

2.9 DETECTOR ARRAYS AND SEGMENTED ANODE PHOTOMULTIPLIERS

Let us now assume that the terrain within the receiver FOV is imaged onto Np pixels of a photon-

counting "array" detector and that each of the Np pixels is fed into a se_e_paratetiming channel as in

the airborne system to be described in Section 3 of this paper. Possible detector configurations
include an array of Geiger-mode APD's, perhaps with a microlens array in front to reduce the
amount of dead space in the detector plane, or alternatively by segmenting the anode era

conventional dynode-chain or microcharmel plate photomultiplier [Degnan and McGarry, 1997].

One advantage is that each pixel is now monitoring the returns/solar noise from a much smaller
area on the ground, i.e. Ap = AFov/Np . Furthermore, multiple signal counts can now be recorded
since the detector and range receiver dead times in different timing channels are decoupled. Even
if the detector elements are fed to a common event timer, a fixed time delay between channels can

be introduced to overcome timer dead times and later removed from the range measurement in

software while still preserving the identity of the active pixel [Degnan and McGarry, 1997].

Since the receiver response is generally flat over the FOV, the noise counts are expected to be

fairly uniformly distributed over the Np pixels or anode segments. The transmitted laser beam, on

the other hand, typically illuminates a somewhat smaller region within the receiver FOV and is
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most heavilyconcentratednearthecenterofthebeam. The signalcountsthereforewillfall

nominallyon Nt pixelswhere Nt< Np.Thus,inthesmallaperturelimit,thecellcontrastina

givensignalpixelchannel(orthecollectivesum ofalltheactivesignalchannels)isimproved

relativetothesingleelementdetectorby roughlya factorofN/N_ ascan be seenfrom (27).Of

course, if all of the independent channels within the receiver FOV are "ORed" together in the

receiver prior to computing the cell counts, the cell contrast is unchanged, relative to the single

element detector, in the small signal/small aperture limit.

In the high signal limit (n, >>Art), however, we see from (29) that, relative to the single element

detector, the cell contrast for an individual signal channel is increased by roughly a factor of Np

due to the fact that the solar noise counts are now shared equally by the Np detector elements
within the receiver FOV but each &the Nt pixels viewing the ground laser spot is still capable of

detecting only one signal photon due to receiver dead time effects. Furthermore, up to Nt
individual photon TOF's can be recorded in a single laser fire interval, resulting in a single shot

quasi-imaging capability provided, of course, that there are sufficient signal photons impinging

on the detector. Thus, the instrument experiences an overall increase in contrast given by

_r
lim C a = 1 - r--g-a+ "'t (31)
,,,_ r b nb

This suggests that an instrument providing approximately one photon per active pixel from the

lowest reflectance surface of interest will, from a power efficiency standpoint, be near-optimum
for rapid topographic mapping. We will demonstrate this for a Mars topographic mapper in
Section 4.

Solving for nb in (31) demonstrates that use ofa pixellated detector in the high signal limit allows

the receive aperture to be increased by roughly a factor of NI relative to the single element case in
(30) while maintaining a constant contrast, i.e.

NI (32)

A further important advantage of the array detector is that the broadening of the return waveform

(Poisson generating function) per pixel by beam divergence or surface slope effects is reduced by

roughly a factor of 1/_1N1. This, combined with the ability to more accurately define the source of
the returning photon within the ground spot, results in a more accurate "quasi-point-to-point"

range measurement.

While they offer high angular resolving power for locating the photon source, imaging

photomultipliers of the type discussed in the Introduction cannot be viewed as pixellated or
segmented detectors. They have a single timing output, and the angular source of the photon in

the far field is determined by additional circuitry. Thus, these devices must be treated as single
element detectors, i.e. N: = 1.
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3. THE NASA AIRBORNE MULTIKILOHERTZ MICROLASER ALTIMETER

3.1 PROGRAM BACKGROUND AND GOALS

Under the auspices of NASA's Instrument Incubator Program fliP), the Goddard Space Flight

Center is developing an airborne version of the microaltimeter as a stepping stone to future space

missions. Instrument development was initiated in December 1998 and the first calibration flights

are scheduled for January 2001. The goals of the lip program are to:

• Develop the necessary technologies and the operational and analytical software.

• Confirm the validity of the mathematical modeling and surface data extraction
algorithms.

• Collect high spatial resolution topographic data over a variety of surfaces (land, ice,

water, biomass, clouds) from a high altitude aircraft under both night and day conditions
and evaluate its scientific usefulness relative to data from conventional altimeters.

• Demonstrate the technical and economic advantages of the microaltimeter concept for
future Earth and interplanetary missions.

In order to improve the compatibility and portability of the instrument between different host

aircraft, the microaltimeter has been designed to attach to a standard Lyca camera mount,
commonly used in aerial surveying and photogrammetric missions, and to operate at typical

aircraft cruise altitudes between 8 and 12 km (25,000 to 40,000 It). The key characteristics of the
lip prototype instrumenrt are listed in Table 3.

Transmitted Laser Pulse Energy

Operating Wavelength
Laser Fire Rate

Transmitter Full Beam Divergence

Aircraft Altitude

Ground Spot Diameter

Receive Telescope Diameter

Detector QE
Detection Threshold

Spectral Filter
Receiver FOV

Range Resolution

Scan Frequency

Circular Scan (rotating optical wedge)
Effective Power-Aperture Product

10 J
532 nm

10kHz

50 Frad (FWHM)
8 to 12 km (cruise)

40 to 60 cm (depending on altitude)

14 cm (87% aperture utilization)

12% (1, 4, or 16 pixels)

1 pe (photon-counting)
0.3 nm FWHM

140 larad (FWHM)

5 cm (detector limited)
20 Hz

300 to 500 m radius (depending on altitude)
0.0013 W-m 2

Table 3: Nominal Operating Parameters of the NASA liP Multikilohertz Microlaser
Altimeter

3.2 REPETITION RATE CONSIDERATIONS

The airbome microaltimeter is designed to operate at 10 kHz single photon sampling rates from
aircraft cruise altitudes between 8 and 12 km (25,000 to 40,000 ft). While other airborne laser

altimeters [ 16] have operated successfully at these very high rates and have provided superb

topographic maps, they typically use laser energies at least an order of magnitude higher and
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operate at very low altitudes (1 to 2 km) where special FAA flight clearances are required. Thus,
our choice of a 10 kHz fire rate was driven by several factors:

1. We wanted to match the return rates of the best conventional altimeters but with a lower

power-aperture product instrument operating at higher altitudes in order to demonstrate

the technical and economic advantages oft.he microaltimeter approach.
2. The 10 kHz rate allows system demonstrations to be carried out at aircrat_ cruise altitudes

as high as 15 km (50,000 ft) without having to contend with multiple pulses in flight; this

simplifies the receiver design.

3. It appeared to be a comfortable rate for modem data acquisition systems and would be

compatible with the projected near term capabilities of space-qualified CPU's or
Programmable Array Logic (PAL) processors.

The single pulse energy of 10 pJ and 14 cm telescope aperture provide a mean signal strength of
about 1.5 pe per laser fire offa surface having a low reflectance on the order of 0.1 and a mean
slope &approximately 45 °. This results in a 76% probability of detection for the aforementioned

reference slope and approaches 96% sampling for level terrain with a nominal soil reflectance of

•15 so that we can achieve the nominal 10 kHz surface sampling rate. As illustrated in Figure 1, a

somewhat more efficient approach for the same power-aperture product would be to operate a 1

gl laser at 100 kHz (for a return rate of about 0.1 pe per laser fire) and accept a roughly 90% data
dropout, but this would have unnecessarily complicated the aircraft receiver and data acquisition

by forcing it to track multiple pulses in flight atthe much higher 100 kHz rate. The latter issue
will be addressed in our later discussion of multi-kHz spacebome systems (Section 4) where the

tracking of multiple pulses in flight is inevitable.

3.3 INSTRUMENT OVERVIEW

A block diagram of the NASA lip instrument is presented in Figure 5. The system computer
enables the firing of the passively Q-switched, frequency-doubled Nd:YAG microlaser

transmitter and controls the repetition rate by adjusting the DC current to a 2.5 W CW laser diode

pump array. The diode pump light travels to the laser via an optical fiber having an emitting
diameter of I00 mm and a Numerical Aperture (NA) of 0.22 and is refocused into the few mm
long monolithic mierochip by a short focal length lens. The microchip consists of a few mm long

segment of Nd:YAG (the gain medium) diffusion-bonded to, or grown onto, a thin crystal of
Cr4+-doped YAG, which acts as a passive saturable absorber Q-switch and produces sub-

nanosecond pulses. The matching indices of refraction and diffused nature of the interface results

in low internal optical loss. The monolithic laser resonator is formed by polishing opposite sides
of the microchip optically flat and parallel and applying reflective coatings [Zayhowski, 1998].

The resulting microlaser, which is only a few mm in length, produces a train of low energy & 10

laJ), sub-nanosecond pulses at multi-kHz rates with no active switching components and, because

of the monolithic structure, can never go out of alignment.

A small pick-off mirror injects the transmitter beam, following some initial divergence, into the
central 5 cm of the common transmit/receive telescope, which uses a 14 cm off-axis parabola as

the telescope primary mirror. Optical leakage from the outgoing laser pulse is sampled by a fast

photodiode, which time-tags the start pulse with a Berkeley Nucleonics Corporation (BNC)
Time-to-Digital Converter (TDC) and starts the range gate generator (BNC Model 8940). The

TEM0o spatial mode quality (M 2 <1.3) &the end-pumped microlaser allows an extremely narrow

transmit beam (_10 arcsec) to be generated with a correspondingly small receiver FOV, which in
turn reduces the solar noise count rate. The laser spot diameter on the ground varies between 40

and 60 cm, depending linearly on aircraft altitude. The receiver utilizes the remaining 87% &the
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availableaperturethatisnotblockedbytheinjectionmirrorto gatherphotonsreflectedfromthe
surface.Straylightrejectionwithinthereceivetelescopeandinterfaceopticsseverelyrestrictsthe
numberof off-axisphotonsreachingthestopdetector.Internalgatingof the detector and range

receiver also helps prevent saturation of the detector resulting from laser backscattering within
the instrument or aircraft.

The returning photons pass through spectral (0.3 nm) and spatial (-140 l_rad) filters and are
imaged onto a 2x2 element Hamamatsu Model R5900U metal channel dynode Photo-Multiplier

Tube (PMT). Because the primary timing unit, the BNC Model B945 TDC, can accommodate up
to 16 stop events (one in each of 16 channels), the receiver design permits 4 stop events to occur

within the range gate for each of the 4 detector elements. Provisions have also been made in the

design to incorporate either a single element Model R7400U (1 channel, 16 stops) or a 4x4 Model
H6568 PMT (16 channels, 1 stop per pixel) as alternate detectors. Use ofpixellated

photomultipliers permit a crude, but inexpensive, demonstration of the potential advantages of

"quasi-imaging" or "point-to-point ranging". For example, at 12 km altitude where the ground
beam diameter is about 60 era, the 4x4 array allows the source of the received photon to be

resolved within a roughly 15cm x 15 cmcell on the ground. In a 300 km Mars orbit, the roughly

15 m diameter beam would be dissected into 4 x 4 meter cells by a 4x4 array leading to a higher

resolution ground "image". Of course, improved spatial resolution could be achieved either
through higher pixellation or the use of imaging photomultipliers as discussed previously in the

Introduction. It is worthwhile to note that, to the extent that the signal and noise generation are
both reasonably uniform within the receiver FOV, splitting the receiver FOV into individual

pixels has no impact on the instrument contrast since the expected signal count and noise count

per pixel are reduced equally.

Each detector pixel output is input to a high speed amplifier/constant fraction discriminator

(AMP/CFD) module (Phillips Scientific Model 6908). The CFD provides a fast timing pulse to
both a "coarse" and a "fine" range receiver. The function of the coarse receiver is to

simultaneously capture all of the "soft" scattering surface returns (e.g. clouds, boundary or fog

layers) as well as the ground return and to provide an initial estimate of where the ground and
near-ground scatterers (e.g. tree canopies and sub-canopies or man-made structures) are located

so that the range gate on the fine receiver can be substantially reduced and optimally placed in
time to concentrate on these surface features.

The "coarse" receiver is an EG&G Ortec Turbo- Multi-Channel Scalar (MCS) which bins all of

the photons received over virtually the entire fire interval and creates a histogram of photon stop

events. The best coarse range resolution of 75 cm is determined by the minimum MCS bin size of
5 nsec. Since this level of range accuracy is more than adequate for clouds or other

meteorological layers and there is similarly no need for high spatial resolution in the transverse
dimension, the "stop" outputs of all the pixels are ORed together at the input to the MCS.

The "fine" range receiver time-of-flight frOF) measurement is determined by differencing the

time tags of the laser fire ("start") event and the photon return ("stop") events in the TDC.

Although the TDC has a timing resolution of 50 psec (7.5 mm), the range resolution of the fine
receiver is limited by the detector impulse response to about 5 cm RMS. Furthermore, since the

TDC is capable of measuring only one stop event per channel, the serial "stop" pulses (up to a

maximum of four) from each of the four pixels must first be separated into parallel lines by a 4
channel Serial-to-Parallel Converter (SPC). The SPC output fans out to the 16 channels of the

TDC, thereby preserving pixei identification.
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In order of decreasing duration, individual gating pulses are applied to the PMT, the MCS, and
the TDC respectively by the multi-channel range gate generator as in Figure 4. In initial flights of

the prototype instrument, all photon '_mes-of-arrival" within the range gate, relative to the start

pulse, will be measured by the "fine" range receiver and recorded on the system hard disk for

later analysis. However, our data extraction algorithms will be running in parallel to validate them

in preparation for later flights, where sotb, vare algorithms will identify the signal photons in
flight and strip away most of the noise photons in near real-time.

There are three computers used in the flight system: the Ranging System Operator Interface

(RGUI), the Ranging System Data Collector (RDATA), and the Navigational and Camera

Control (NAV). A common timing reference is input to all three computers in the form of the
current laser shot counter, which allows post-flight coordination of data recorded on separate

computers.

The Ranging System Operator Interface is a 500 MHz Pentium HI processor running Windows

NT 4.0. The system has 128 Mbytes of memory and two 13 Gbyte IDE Ultra ATA hard drives.

One of the drives is used for system and program files; the other is mounted in a receiving frame

for easy removal and will be used to record the flight data. The operator display is an LCD 20"
rack mounted monitor with a pixel resolution of 1280 x 1024. The RGUI computer is responsible

for operator interface, data logging, signal processing, and control of the EG&G Turbo-MCS

Histogrammer. In addition this computer picks up a small data set from the NAV computer at 1
I-Iz using internet file sharing, and it reads 720 Kbytes of shared memory data from the RDATA

computer at 1 I-Iz. Signal processing in RGUI provides visual feedback to the operator and can be

used to provide control of the range window. All of the data is logged to the removable hard disk

once per second. The amount of data recorded is approximately 3 Gigabytes per hour.

The basis of the RGUI set, ware is NTGSE, which is a soRware package originally developed at
GSFC for other missions. NTGSE has been modified for our application and has allowed a
quicker sottware development cycle.

The Ranging Data Collector (RDATA) is a 233 Mhz Pentium processor running DOS 6.22. The

processor is an embedded module in a National Instruments VXI crate, which also contains a
MXI interface to the RGUI computer (with 32Mbytes of shared memory), a digital I/O module

(National Instruments DIO-128), and two Berkeley Nucleonics modules for ranging interface: the
B940 digital delay generator (DDG) and the B945 16-channel time to digital converter (TDC).

The embedded CPU contains 32 Mbytes of memory, a 4 Gbyte hard disk, as well as ethemet,

SCSI, serial and parallel interfaces. RDATA uses an interrupt from the TDC module at the end of
each range gate to trigger the reading of the laser fire time, the 16 range returns, the scan angle,
and the shot counter. Interrupts are generated at the laser fire rate of 10 kHz. Data is placed in a

shared memory buffer for the RGUI computer to pick up when it can. The shared memory buffer
is a circular buffer and currently holds 5 seconds worth of data. Commands from the RGUI to the

RDATA computer are also sent across shared memory. These include the range delay and the size

of the range window, and are picked up by RDATA at 20 Hz.

The instrument will be flown with and without a simple scanner in order to demonstrate both

contiguous 2D linear mapping of the underlying terrain as well as the 3D mapping of large
swaths, extending over several hundred meters in the transverse direction, during a single pass of

the aircraft. Because of the small size of the microaltimeter transmit/receive optics, an
inexpensive optical wedge roughly 15 cm in diameter can be rotated at 20 Hz to superimpose a

circular scan on the linear flight path motion. The rotating wedge, which deviates the beam from
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nadirbyapproximately1degree,simultaneouslydeflectsboththetransmitterbeamandnarrow
receiverFOVwhilemaintainingacommonboresight.

3.4 POST-FLIGHT DATA PROCESSING

In order to generate an accurate topographic map, it is essential for any laser altimeter that we

know both the instantaneous position and attitude of the instrument on each laser fire in addition

to the pulse time-of-flight and any fixed timing biases within the instrument. The latter bias can
be determined by ranging to a target whose distance from the instrument reference point is well

known. For the quasi-imaging and scanning microaltimeter, one must also make corrections

based on the instantaneous off-nadir angle of the scanner and the X-Y coordinate (or pixel) which
recorded the photon event.

Multiple GPS geodetic receivers will be used (one in the aircraft and one or more on the ground)

to provide post-flight dynamic differential positioning at the few decimeter level. The fixed offset
vector between the GPS antenna phase center and the altimeter reference point in the aircraft

reference frame will be measured and corrected by three-axis attitude data to accurately locate the

altimeter reference point in the Earth reference frame during flight. Instantaneous instrument
attitude will be provided by a three-axis fiber-optic gyro mounted directly on the altimeter optical

bench and calibrated pre-flight. To counter or monitor gyro drift errors, independent updates of

attitude will be obtained in-flight by (1) a digital compass (for heading) supplemented by two
collocated and orthogonal bench-mounted inclinometers and (2) repeatedly over-flying a set of

four "ground stars", whose relative positions have been precisely located at the few mm level

using geodetic GPS receivers. These "ground stars" will be located near the center of the
interrogated region to accommodate frequent overflights and will be arranged in a square or

diamond pattern a couple ofkm on a side. Thus, when the aircraft is near the center of the pattern,

they can all be viewed simultaneously by the wide FOV camera attached to the altimeter
instrument, providing adequate angular resolution for updating the aircraft attitude at the few
arc,second level.

One candidate approach to generating the ground stars is to use small battery-powered Light

Emitting Diode (LED) arrays, which are pulsed by the lpps output era GPS Timing Receiver.
The onboard digital camera, boresighted with the range receiver and synchronized with the wide-

angle ground star emission by the lpps output of the onboard GPS receiver, then records the
spectrally narrow images of the ground stars through a ban@ass filter. The deviation of the

ground stars from their predicted positions in the camera FOV, based on the few decimeter
accuracy aircraft positioning, allows the instrument attitude to be updated post-flight with few

arcsecond accuracy.

The instantaneous angular position of the scanning wedge is obtained by interpolating between

multiple sensors which monitor the passage era particular point on the wedge by producing an
output pulse which is time-tagged and recorded in the data file along with the ranging data. This

was viewed as an adequate and less expensive and data intensive approach than using encoders
due to the fairly constant wedge velocity between monitoring points. As mentioned previously,

the detector pixel producing a given photon event is recorded by the "fine" range receiver and can
be used to correct the measured elevation for the transverse location of the photon source within

the ground spot.

To summarize, a "start" pulse and potentially one or more "stop" pulses (noise and/or signal
counts) will be recorded, for each laser fire, bythe coarse and free receivers, both of which can be

viewed as correlation range receivers but with vastly different range gates and resolutions. The
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post-detectionPoissonfiltering techniques described in Section 2.5 will identify which cells in

the coarse and fine receivers are most likely to contain signal counts. The photon TOFs for the

echos selected as signal must then be subtracted from the aircraft altitude and corrected for pitch,

roll, and yaw in order to determine the terrain heights. Additional corrections for the imposed
off-nadir pointing due to the rotating scanner must also be made. Approximate X-Y locations, as

determined by the pixellated or imaging detector, further allow more accurate placement of the
measured terrain heights in the transverse dimension.

The final analysis data product will be a three dimensional plot (and corresponding data files) of

the terrain or sea heights for the scanned swath (< + 200 m) beneath the flight path. Early

calibration flights will concentrate on target areas which have been accurately mapped by
conventional altimeters or other techniques. Comparisons between existing Digital Elevation

Models and our own terrain measurements will be produced, giving point-to-point height
differences and an overall measure of terrain difference.

Follow-on science flights will investigate instrument performance over a variety of terrain.
Barren terrain represents the simplest target for the microaltimeter and will be useful in

evaluating and optimizing the technique for future planetary topographic mapping missions.

Highly vegetated surfaces are much more complex but will determine whether or not the

microaltimeter can successfully recover canopy and sub-canopy heights via statistical
interpretation of the high repetition rate data. Towns and cities will test the ability of the

instrument and data processing algorithms to record and adapt to frequent and large elevation
changes and assess its value as an aerial surveying tool. Finally, overflights of beach areas will

evaluate its capability for monitoring beach erosion and wave heights and for performing shallow

water bathymetry at single photon levels.

3.5 SIMULATION OF THE AIRBORNE MICROALTIMETER PERFORMANCR AT 12 KM ALTITUDE

Our analysis of the airborne microaltimeter is summarized by the six plots in Figure 6. Each

graph contains three curves, labeled bythe assumed value ofp for a wavelength of 532 nm, e.g.

p = 1 (snow, thick clouds), 0.15 (soil or dense dry vegetation), 0.1 (dense green vegetation). A

slope of 45 degrees was assumed which reduces the mean signal by a factor of 0.707 and results
in a single shot return waveform of abont 4 nsec. The noise models derived in Appendix A

indicate that 2 to 4 noise counts per laser fire are expected to occur over most terrain within a 4
microsecond gate which is well within the sixteen stop limit of the receiver. Over highly

reflective clouds or snow, this can grow to 11 counts per fire. A receiver dead-time of 10 nsec
was estimated for the aircraft hardware so that Eqs. (28) through (30) apply. A nominal 4

microsecond timing gate was assumed, which corresponds to a "fine" receiver range window of

600 m. The latter value would accommodate detailed topographic mapping of the tallest forests
(Giant Sequoias grow to a height of almost 100m) and the tallest skyscrapers in major cities (the

top of the Sears Tower in Chicago is 442 m above street level). For simplicity, it is further
assumed that the microaltimeter is operating in an unscarmed (2D) mode with a single element
detector.

Figure 6a plots the maximum surface sampling rate, f;,_, versus the power-aperture product for an
altimeter operating at the maximum cruise altitude of 12 km as computed using (4) and the

instrument parameters in Table 3. It can be seen from the figure that the minimum power-a_erture
product required to achieve 10 kHz surface sampling from the worst case surface is 1 x 10 Watt-
m2. This is to be compared to our actual instrument value of 1.34 x 10.3 W-m 2, which is chosen

about 34% larger in order to have a high probability of detection on each laser fire with a nominal

22



meansignalstrengthof I pe per laser fire (see Figure 1) and to avoid the need to operate the

system at 100 kHz rates as described previously in section 3.2.

Figure 6b plots the minimum cell contrast as a function of the number of laser fires per frame

(frame interval). The cell contrast decreases with increasing frame interval because of the need to

widen the range bin according to Eq. (23a). Over the range of I to 100 laser fires per frame,

which is common to Figures 5(b)though 5(0, the frame interval increases from 0.1 to 10 rnsec,
the range bin width varies from 4 to 10 nsec, the corresponding number of range bins decreases

from 1000 to about 400, and the ground distance covered by the aircraft at a velocity of 100m/sec
varies from 1 cm to 1 m.

Figure 6c plots the optimum frame threshold as a function of the number of laser fires per frame

as computed from (19) and rounded offto the next highest integer.

In Figures 6d through f, we plot the Differential Cell Count (normalized to M), the probability of
correctly identifying the signal cell, and the mean number of falsely identified cells per frame

respectively as a function of the frame interval. We note that the Normalized Differential Cell

Count approaches the ideal value of unity for 15 laser fires per frame or a frame interval of 1.5
msec. As expected, the probability of detecting the signal cell also approaches unity and the mean

number of falsely acquired noise cells per frame falls well below unity for these longer frame
durations. However, one should choose the minimum frame duration that gives acceptable results

since ultimately the range bin can grow to encompass a large fraction of the range gate which

limits the effectiveness of the selection algorithm as a real-time noise filter.

It should be noted that these analyses assume a worst case solar noise background as calculated in

Section 2.4. The frame threshold and frame interval can be initially set based on a priori

expectations and then recomputed in flight using (19) and actual measurements of the mean
signal and noise counts per range cell. A smaller mean noise count will increase the contrast,

which in turn reduces the threshold and the required frame interval. Adaptively narrowing the
range gate over barren land or low vegetation to reduce the value of N_ in (19) has a similar
effect.

Figure 7 shows the results of a Monte-Carlo simulation of the microaltimeter operating in non-

scanning mode over a rapidly changing terrain devoid of any ground vegetation. The simulated

surface, which includes a 50 meter cliff, is easily seen against the solar background noise in the
coarse map of Figure 7a. In spite of the steep cliff, the selection algorithm was able to rapidly
identify and reacquire the surface returns from the top of the cliff.

The expanded scale in Figure To shows the actual roughness for a segment of the simulated
surface in Figure 7a as well as the data points selected by the algorithm as surface returns (points

surrounded by circles). The few noise counts falsely identified as signal in Figure To happened to
fall into the chosen signal cells and would be eliminated in iterative applications of the selection

algorithm if one substitutes the bin size of the signal cell for the range gate and subdivides it into
still smaller range bins on each iteration.
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4.0 SPACEBORNE ALTIMETERS FOR PLANETARY TOPOGRAPHIC MAPPING

4.1 ADDITIONAL TECHNICAL CONSIDERATIONS FOR SPACEBORNE MISSIONS

To simplify our discussion of spacebome microaltimeters, we will consider a planet other than
Earth, whose surface topography is uniquely complicated by the presence of vegetation and man-

made structures. We will also consider a non-scanning system with a single element detector. In

scaling the microaltimeter from airborne to spacebome platforms, we encounter the following
technical issues:

1) The required power-aperture product for the altimeter scales as R 2 for a given surface
sampling rate, but, if the receiver dead time is long compared to the single shot surface

return waveform, the receive aperture will necessarily be limited by the need to keep

noise counts within acceptable limits.

2) One must contend with multiple pulses in flight in order to achieve kHz or higher
sampling rates from orbit.

3) Higher spacecraft ground velocities imply a faster rate of growth in the required range bin

with increasing frame interval and modest surface slope. In addition, the roundtrip transit
time to the surface is on the order of milliseconds which contributes to the uncertainty in

the predictive range window and further increases range bin duration.

4) Prime power, size, and weight play a more significant role in spaceborne instrumentation,
especially for interplanetary missions.

We will address each of these topics as we proceed with an analysis of a Mars topographic
mission.

4.2 ONE METHODOLOGY FOR DESIGNING A MULTI-KHZ MARS MICROALTIMETER

Using our theoretical results from Section 2, we will now illustrate one methodology for
designing an optimized multi-kHz microaltimeter to rapidly map the surface of Mars. The design

process begins by: (1) selecting the minimum sampling rate one wishes to achieve over a nominal

worst case surface (i.e., maximum median slope and minimum reflectance); (2) minimizing the
instrument optical losses; (3) minimizing the noise background via spatial and spectral filtering

and utilizing a correspondingly low transmitter beam divergence; and (4) selecting a high

quantum efficiency detector.

A typical altitude for a Martian satellite (e.g., MOLA) is 300 kM with a corresponding ground
velocity slightly greater than 3 km/sec. Thus, if we wanted to sample the worst case surface every

meter along-track, we would set f` = 3 kHz. We note from (3) that, in photon counting mode, the
sampling rate, f,, is usually less than the laser fire rate, fqs, since the probability of detecting a

signal photon is less than unity unless n_ >>1.

Assuming a 50 _trad full beam divergence, which is easily achieved with a transmit aperture of
one to two inches and the TEM00 mode quality of the microlaser source [Zayhowski, 1998], the

beam diameter on the ground is 15 m. Thus, the mean spacing between subsequent spots on the

ground is about 7% of the beam diameter and the r_ums are therefore highly contiguous. We will

further assume that the receiver FOV is twice as large (100 _trad) as the transmit beam in order to

accommodate some alignment and/or stability errors in the boresighting of the transmitter and
receiver.
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The median slope measured by MOLA, on 300 m beam centers along-track and averaged over 35
km baselines, as analyzed by MIT rarely exceeded 5 degrees and the legend on their global map

shows a maximum plotted value of about 23 degrees [Aharonson, 2000], which we will adopt as

_. We will also assume that the nominal reflectance of soil on Mars is comparable to that ca

Earth, i.e. about 15% at 532 nm. Locally, the slopes and reflectances may vary about these values
leading to both increases or decreases in the photon return rate from the surface, but our auto-

tracking algorithm is capable of adjusting to these variances.

Over high reflectance surfaces (if any), the mean signal photon counts will increase, and the

microaltimeter sampling rate will approach a maximum determined by the laser fire rate.

However, because of the receiver dead time effects discussed in Section 2.8, we must include an

optical attenuator in our receiver design in order to reduce the mean noise count per cell and
maintain the system contrast at an acceptable level by mimicking a lower reflectance surface.

Without the attenuator, a sufficiently bright surface would be indistinguishable from the solar

background.

The GLAS project plans to use a space-qualified photon-counting detector with a quantum

efficiency greater than 50% at 532 nm [Abshire et al, 2000]. The SPAD detector is actively

quenched with a dead time of 50 nsec. The principal optical loss element in the receiver is the
narrowband spatial filter. Spectral ban@ass filters with good optical throughput (>50%) at 532

nm are generally limited to a spectral bandwidth of AX = 3 A ° FWHM. We will adopt this value

for the purposes of this analysis and assume a total receiver optical throughput efficiencies of r/r =
0.4. If necessary, spectral filtering can be further enhanced, via a thermally tuned etalon filter, to
as little as 0.3 A° with an additional 15% loss in throughput as in the GLAS instrument [Abshire

et al, 2000].

Instrument Characteristics

Wavelensth,

Detector Quantum Efficiency, r/q

Detector Pixels, Np

Receiver Optical Efficiency, r/r

Transmitter Full-Angle Divergence, 20t

Receiver Full Angle FOV, 20r

Spectral Filter Bandwidth, AA

Receiver Dead-Time, ra

Noise count rate per unit receive area, 13

Minimum sample rate, fi

Altitude, R

Ground Velocity, vg_ff

Reflectance, p

Maximum Median Slope, crmo_

One-Way Transmission at Nadir

532 nm

0.5

1

0.4

50 _trad

100 _ad
3A o

50 nsec

x 107/mZ-sec

3kHz

Spacecraft Characteristics

300 kin3.13 km/sec

Surface Characteristics

0.1523 °

Atmospheric Characteristics
[ 0.90

Table 4: Summary of parameters used in Mars microaltimeter analysis.
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Substitutingtheaforementionedvalues,whicharesummarizedinTable4,into(4) and solving for
the minimum power-aperture product yields a value PA,,n = 0.017 W-m z. For night only

operations, one can arbitrarily trade off receive aperture and laser power to achieve the necessary

product. However, we will now demonstrate that, in the presence of solar noise, this minimum

power aperture product, which from (3) implies a mean signal count per laser fire on the order of
0.1 pe, is not necessarily the optimum choice. In order to reduce the mean noise count per range

bin well below 0.1 pe and maintain adequate cell contrast, the receive aperture must be kept

relatively small, placing a greater burden on the laser transmitter power to achieve the required
power-aperture product. In all potential instrument configurations, the receive aperture

requirements are fairly modest (10 to 20 cm), and one may wish to choose an instrument

configuration which places the fewest demands on the laser.

Since Mars lies a mean distance of 1.524 AU from the Sun, the spectral irradiance, Nx ° impinging
on the planet's atmosphere is reduced by a factor of 2.32 relative to Earth to a value 0.086 W/m 2-

A° at 532 nm. Furthermore, since Mars' thin atmosphere is expected to be more highly
transmissive than Earth's, the atmospheric scattering component of the noise is reduced relative to

the surface component. For the purposes of our analysis, we will assume an atmospheric

transmission of 90%. From (AS) and (AI 1) in Appendix A, we calculate a worst case solar count
rate per unit receive area of 4.2 x lOr/m2-sec from the Martian surface and 8.2 x 106/m2-sec from

the intervening atmosphere. Thus, the total worst case solar noise count rate is/3= 5.0 x 107/m 2-

sec with 84% due to surface scattering. If we assume a typical receiver dead-time, rd, of 50 nsec

in (30), we obtain an upper limit on the receive aperture ofAm_ = 1/flrd = 0.4 m 2, corresponding
to a maximum receiver diameter of 71 cm in the low contrast limit.

We demonstrated in Section 2.5 that different combinations of contrast and frame time can

provide roughly the same ability to distinguish signal from noise. The required signal count per

frame, Ns, increases with decreasing signal cell contrast as demonstrated in Figure 4. The frame

duration is given by the formula ry =N/f_. The corresponding range bin can be computed from

(23) with 7 = 1.77 x 105. The results are summarized in the following table:

Contrast,
C

2

Signal Counts per Frame, N_

Ground Track per Frame (m)
80

Frame Duration,

xf (msec)
27

Range Bin,

Zb (nsec)

515

3 50 17 338

5 35 12 249

10 25 190

Table 5: Combinations of contrast and mean signal counts per frame which provide roughly

the same ability to discriminate signal from noise. Because for f, = 3 kHz we make on

average one range measurement for every meter of ground travel, the ground track covered
per frame is roughly equal to N, in meters. The corresponding frame durations and range

bins for the postulated Mars mission are computed using various formulas cited in the text.

We now let the mean signal count per laser fire, ns, vary between 0.1 and 10 pe and compute in
succession the following quantities:

Single-shot probability of detection: Pa = 1 - exp(-n )

Laser Fire Rate: los = f_ from (3)
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1
Receiver Area: A, -- from (30)

- n'R2 from (1)
Transmitted Single Pulse Energy: E t CaAr

Transmitted Laser Power: P_ = re_sEt

Power-Aperture Product: _A, -- n_ f_R 2
1 - e--"* C a

The results are plottex:! in Figure 8 as a function of the mean signal count per laser fire over a
range 0.1 pe <n_ < 10 pc. In, Figure 8a, the single shot probability of detection is greater than

98% for n_ > 4. Figure 8b illustrates the fact that, at low mean signal strengths on the order of 0.1

pc, the altimeter must be operated at 30 kHz in order to achieve the 3 kl-lz sampling rate and
compensate for the low probability of detection. The required laser fire rate falls asymptotically

to 3 kHz as the probability of detection asymptotically approaches unity with an increased mean

signal count. In (c) through (e), the four curves are labeled by the assumed value for the contrast,
C, with the corresponding value of the mean signal count per frame, N_, given by Table 5. In

Figure 8c, we use (30) to demonstrate that a stronger mean signal count allows the receiver

diameter to grow until the mean noise count per bin per fire gets close to the limiting value, nb=
1/(C-l). This results from the fact that the system dead-time allows the detection &only one

signal photoelectron per laser fire as discussed in Appendix B. Since the receiver area cannot
grow further once this limit is reached, the transmitted pulse energy must increase to achieve still

higher mean signal counts as in Figure 8d. Figure 8e provides the interesting and useful result that

the required average laser power reaches a minimum for all contrasts at a mean signal count of
about 1.24 pc. As the desired contrast increases, however, the required laser power also increases,

again due to dead-time effects which constrain the receive aperture. Finally, the Power-Aperture
product is plotted in Figure 8f, and, as expected, all four contrast curves overlap perfectly. As

expected from the theoretical results in Section 2.1, the power-aperture product required to

achieve a given sampling rate increases monotonically with increasing ns.

Returning to the point of minimum transmitter power in Figure 8e, we note that a transmitted
laser power of only one watt, coupled with a very modest 18 cm diameter receive telescope,

would allow us to do nominal 3 to 4.3 kHz ranging to the Martian surface from a 300 km orbit,

provided we accept a minimum signal contrast of 2. The laser would operate at roughly 4.3 kHz

with a single pulse transmitted energy of only 230 _tJ. Choosing a higher signal contrast of 10

would allow use era smaller 10 cm telescope, with perhaps a correspondingly smaller and lighter
scanning mechanism (if relevant), but it also would require a larger and heavier 3 watt laser (700

_J @ 4.3 kHz) with approximately three times the onboard power requirements. As demonstrated
in Figure 8e, the power-aperture products would be identical for the two systems (0.024 W-m2),
but the lower contrast system would place less of the signal strength burden on the laser. This

would normally make it the system of choice since, by conventional spaceborne altimeter

standards, the telescope size and weight is very modest in either case. The principal advantage of
high contrast systems is that fewer noise events are retained by the autotracking algorithm in real

time, but, as discussed in Section 2.5, in-flight post-processing of the data can easily remove
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these.As a point of reference, the power-aperture product for the MOLA altimeter is almost 4
times larger, i.e. PAMoLA= 0.088 W-m z, yet the sampling rate is 300 times smaller (10 l-tz vs 3

kHz) for the nominal "worst case" surface.

To summarize, we argued in Section 2.1 that operating the altimeter at low mean signal levels (n,

_<0.1) allowed us to maximize the sampling rate for a given power-aperture product. In the

absence of background noise, we are free to arbitrarily choose the transmitted power and receive

aperture which yield this product. In the presence of noise, however, the receive aperture must be
severely limited in order to maintain the necessary signal contrast (i.e. nb < ns < 0.1), which in

turn places more of the signal burden on the laser transmitter. By operating at a higher signal

level slightly greater than 1 pe (and hence a somewhat higher power-aperture product), we can
increase the size oft.he receive aperture and minimize the required transmitter power.

4.3 TIMING OF MULTIPLE PUI,_ES IN FLIGHT

In the 10 kHz airborne system discussed in Section 3, only one pulse is in flight at a given time
for aircraft altitudes below 15 km. Thus, a simple event timer, triggered by the outgoing pulse, is

sufficient for the range measurement. For a 4 kHz microaltimeter operating from a circular orbit

300 km above Mars, however, there are approximately eight pulses simultaneously in flight,

separated by roughly 75 km.

The problem of designing a correlation range receiver (CRR) which handles multiple pulses in

flight has been addressed previously in connection with NASA's developmental photon counting

SLR2000 satellite laser ranging system, designed to operate with segmented anode

photomultipliers at a 2 kHz laser fire rate. An early version of the receiver [Degnan and McGarry,
1997] had a demonstrated RMS ranging resolution of 4 nun and was later improved to about 1

mm [Degnan, 1998]. Since such high range resolution is unwarranted for an altimeter designed to
have few cm resolution, one can consider simpler and more power efficient altematives for the

timing of photon "events".

The range receiver is designed around a "sub-clock" which produces timing pulses at the chosen

laser fire rate, fQs, and is derived through frequency division from the high rate output (typically
10 MHz) of the spacecraft clock/frequency standard. This "sub-clock" pulse can then be used to

trigger both the microlaser transmitter pump diodes and a timing receiver, which is operated

modulo the laser fire interval (- 250 btsec for our 4 kHz Mars example). The pump diodes

produce a rectangular optical pulse which pumps the Q-switched microlaser until laser threshold
is reached, at which point an intense subnanosecond pulse is rapidly produced. The timing jitter

between the laser pump trigger and the emission of the laser pulse can be large compared to the

desired few hundred picosecond timing resolution. Thus, to achieve the necessary range accuracy,

the temporal positions of the outgoing pulses relative to the sub-clock 'kick" must be measured on
each fire. The return photon from the Martian surface arrives 8 fire cycles later, and its time of

arrival is again measured relative to the sub-clock timing pulse. By properly pairing the "start"

and "stop" events, accurately measuring their temporal positions relative to the sub-clock "ticks",
and adding the appropriate number of intervening sub-clock cycles, an accurate time-of-flight
measurement can be obtained [Degnan and McGarry, 1997]. Thus, each photon event can be

labeled by: (1) the epoch time second on the spacecraft clock preceding the measurement; (2) the
laser fire interval within the following second (0 - 4000 for a 250 psec interval) during which the

photons departed the instrument ("start event") or were received ("stop event"); and (3) the time
interval between the sub-clock pulse and the photon event as measured by the modulo timer.
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Becauseof the large 75 km spacing between pulses, the number of intervening clock cycles can
be discerned from a priori knowledge of the satellite altitude obtained from navigation data.

Furthermore, at 4 kHz, the 250 _ec fire interval allows a range depth up to 37.5 km to be probed,
which is long enough to easily accommodate the entire topographic range of the inner planets.

For example, we note that the highest point on Earth, Mt. Everest in Nepal, lies roughly 8.8 km

above mean sea level. Thus, all surface and canopy returns (plus most low lying clouds of interest
for radiation transfer studies) could be accommodated within a fixed range gate on the order of 60

I_sec if one were to assume a fixed receiver range gate, a highly circular orbit, no terrain below

sea level, and a truly spherical planet. In reality, because of the planet's oblateness, an altimeter in
circular orbit about the Earth would require a slightly larger temporal window on the order of 75

_,sec to accommodate the global surface returns. Still, this global variation in surface topography

represents only 33% of the 250 microsecond period between pulses. Extending the range window
to span either the entire 20 km height of the Earth's atmosphere to include high cloud returns for

radiation balance measurements or the highest feature on Mars, Olympus Mons at 21 km [Frey,

2000], causes a global spread up to 146 _ec or 55% of the laser fire period. Furthermore, since
the laser fire is triggered by the sub-clock ticks and the jitter in the pulse output is also a relatively

small fraction of the fire period, the start and stop pulses can be temporally isolated from each
other within the laser fire period via a fixed range gate generator and input to a single modulo

timer to conserve prime power.

At laser fire rates greater than about 7.5 kHz, the range retum intervals from different laser fires
will begin to overlap in time at the receiver for probed range depths on the order of 20 km,

making data interpretation more difficult. To avoid this complication, higher repetition rate

systems would need to reduce the range depth and concentrate on surface and/or near-surface
retums (e.g. tree canopies and low lying cumulus clouds.

Finally, if the 250 _ec laser fire interval for our Mars Microaltimeter is broken up into 500 range

bins, as assumed in Figure 4, the resulting range bin duration of 500 nsec is a good match for the

C = 2 case in Table 5, which required the least transmitter power and hence was the instrument
configuration of choice.

4.4 A POWER EFFICIENT ALL-DIGITAL TIMER

As mentioned in the Introduction, conventional laser altimeters often make use of high speed time

digitizers which record the waveform of the multi-photon retums. When compared to digital

circuits, these analog devices tend to consume large amounts of prime power as and require the
use of complex (and often fallible) algorithms to compute the range to complex surfaces. On the

other hand, computing the time-of-flight of a single photon is a relatively unambiguous process

and, combined with the quasi-imaging capabilities ofpixellated detectors, permits greater spatial
resolution in both the horizontal and vertical directions. Furthermore, the modest ranging

resolution (few cms) required by the altimeter allows one to consider a compact and power-

efficient all-digital design for the modulo timer [Degnan et al, 1999].

A block diagram of the All-Digital Event Timer, with an integrated 6x6 micro-APD array, is

shown in Figure 9. A 4 GHz clock is derived from a voltage controlled crystal oscillator and is

phase-locked to the 10 MHz frequency standard. A 21 bit synchronous counter is used to time tag
photon events from the 36 element array. An input signal conditioner is used to "latch" the

incoming photon events to the nearest 4 GHz clock pulse, providing a timing resolution of 250
psec. The latch stores the counter data to time the event. An array location data generator

identifies which pixel of the array has been excited by the incoming photon. The pixel location
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informationandthehighprecision timing information are then fed to a 64 bit FIFO (First In First

out) buffer. The resulting FIFO output is a 64-bit word that contains the time of the occurrence of

the event and the location of the excited pixel. We estimate that low voltage (53V) integrated

circuits (IC's) and differential signal (LVDS) drivers and receivers can reduce power
consumption of the timer to less than 6 watts in a very small package occupying about 5 cubic
inches.

5.0 SUMMARY

We have described a photon-counting laser akimeter whose advantages include: (1) a more

efficient use of available laser photons providing up to two orders of magnitude greater surface

sampling rates for a given power-aperture product; (2) a simultaneous two order of magnitude

reduction in the volume, cost and weight of the telescope system; (3) the unique ability to
spatially resolve the source of the surface return in a photon counting mode through the use of

pixellated or imaging detectors; and (4) improved vertical and transverse spatial resolution

resulting from both (1) and (3). Furthermore, because of the significantly lower laser pulse
energies, the microaltimeter is inherently more eyesafe to observers on the ground and less prone

to the internal optical damage, which can terminate a space mission prematurely.
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APPENDIX A: ALTIMETER NOISE MODEL

A.| SOLAR SCATTERING FROM THE ATMOSPIIERE

Because the effective height of the atmosphere above sea level 0a, -20 Kin) is small relative to
the mean radius of the Earth (Re = 6378 Km), we can represent the atmosphere by a stratified

rectangular slab with the interrogated surface centered on the bottom face. The atmospheric

extinction coefficient, _t (z), is assumed to be a function of the vertical height only and no

horizontal gradients are assumed. The atmospheric transmission at nadir is then given by

IiTo: T(h_,_): exp - dz'/z z'

1_ h,

(A1)
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whereh, is theheightof the surface above sea level, and we assume the altimeter is located well

above the attenuating atmosphere.

The solar irradiance can be viewed as a plane wave incident on the top plane of the atmosphere at

a solar zenith angle, 0,. If we ignore the slight bending of the solar rays as they propagate through
the vertically stratified atmosphere, the transmitted irradiance to a differential volume at an
arbitrary height above sea level, z, is given by

/ ! ,)0 -..N°exp -secO. dz'_(z' =N_[T(z,_)] (_)

where N ° is the extraterrestrial solar irradiance impinging on the Earth's atmosphere which, at

532 nm, has a value N°n = 0.2 watts/m2-A °.

The altimeter receiver has a solid angle field of view (FOV) given by

fir = x0_ (A3)

where 0, is the half angle of the far field cone viewed by the receiver. The scattered solar power

collected by a receiver with collecting aperture A, and spectral bandwidth AX is given by the

following integral

G (R-")
a, (A4)

i P( )[r( )],+..o.: Z Z,O0
4_

%

where (R-z) is the range to the differential scattering volume, 13(z) is the volumetric scattering
coefficient at a height z above sea level, and we have assumed isctropic scattering. For

wavelengths far from absorption lines, the atmospheric extinction is due entirely to scattering so

we can set 13(z) = _t(z). Using (A1) and (A4), the rate at which atmospheric solar scatter is
convened into photoelectrons by the receiver is

• ]_q', N; (A/I,) fd:_(:)[T(7_,,oo)]
.4 r_'2r° oo I+ s=c o,

n_= he 4_r
h,

° [ '! ,1%rL N;(AA)A,fL ;clz_(: z) exp -(1 + sec 0, dz'p(z'
hv 4_r _,,

(A5)

where rlq is the detector quantum efficiency, 11,is the receiver optical throughput efficiency, and

hv is the photon energy at the laser wavelength. In order to evaluate the final integral in (A5), we
define the new variable
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_O

= (1 + sec 0,)_ dz' p(z') (A6a)
g

which further implies

d_ = -(1 + see 0,)/_(z)dz (A6b)

Substituting (A6) into (A5) and evaluating the trivial integral yields

" rlqrL N°(A2)A,D, 1- To'+_°* /
n,_= hv 4z "l_s--_cb-_ J (A7)

Note that as To -->1 (no atmospheric scattering), the background count rote correctly goes to zero

for all values of 0s.

When the solar zenith angle equals zero, the background photoelectron count rate due to

atmospheric scatter has a maximum given by

._ < rlq17rA---------------_N_(A2)f_, - (A8)
4zhv

and goes to zero as 0,--)n/2.

A.2 SOLAR SCATTER OFF THE SURFACE

The mean background count rate due to solar scatter offa Lambertian surface is given by the

equation

- n_zx_t)szrpl o cos_
nhv

where _ is the subtended angle between two vectors - the surface normal and a vector originating
from the center of the beam pattern on the ground and directed at the Sun as in Figure 3. The

angle _ can be expressed in terms of the local surface slope, a, and the solar zenith angle, 0_, via

the equation

cos _ = cosa cos tg_+ sin a sin O, cosq9 (A 10a)

where qois the angle between the plane containing the altimeter line-of-sight and the Sun (x-z

plane) and the plane containing the altimeter line-of-sight and the surface normal. Since

2z > q9> 0, we have the condition

>_ >cos( +03 (Al0b)
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andcos V has the maximum value of I when 9=0 and o --0,. Thus, from (A9), the following

inequality holds

n. <_ rlqrLA" N°(A,_.)f2_pTo 2 (All)
_v

Note from (A9) that the surface is in shadow (i.e. no scattered surface radiation) when 3n/2 > u/

> hi2.

APPENDIX B: EFFECTS OF RECEIVER DEAD TIMES ON SIGNAL CELL
CONTRAST

B.1 RELEVANT TIME CONSTANTS

There are several important time constants which can affect the overall performance of the
microaltimeter receiver. These include:

*s, the overall spreading of a single laser pulse by the surface under investigation

% the integration time of the photodetector and front end receiver electronics which
determines whether or not threshold is achieved in the timing discriminator

xa, the "dead time" of the detector or range receiver in which no pulse timing can be
performed following a triggering signal or noise count above threshold

xs, the range gate width

Xb, the duration of a range bin in the correlation range receiver

xf, the duration of a frame in the correlation range receiver

B.2 GENERAL THEORY

We define the generating function of the Poisson process in the usual way, i.e.

g(t) = 2 + s(t) 03.1)

where 2. is a noise background (assumed to be constant over the range gate width) and s(t) is the

signal waveform which is distributed over a time interval, rs, which varies with surface slope and
roughness. The mean number of counts occumng in an infinitesimal time interval dt is given by

a.(t) = g(Oat 03.2)

which is also equal to the probability of a photon being detected in the infinitesimal interval dt by
a receiver with a detection threshold of one photoelectron.
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To obtain the true mean photon count within the differential time interval at time t, we must
multiply (B.2) by the probability that no photon detection took place within the previous time

interval t-ca <t' < t, i.e.

Pnd(t-ra <_t'<t)::exp - dt'g(t')

I t-rd

(B.3)

Thus, the mean count in the mth range bin, is given by the integral

/rr¢ b

?/m : f

(m-Orb

g(t) ex - ' t'

L t-_a J
03.4)

If signal is not present in the range bin, we can set s(t) =0 in 03.4) and the mean number of noise
counts collected in a range bin is reduced, relative to a detector/receiver with intrmitely fast

recovery, to

rib'= 2r b exp(-Ard):nb exp(-2ra) 03.5)

Thus, for Mhz noise rates and receiver dead times on the order of 100 nsec or less, the mean noise

count per range bin is reduced by less than 10%.

Substituting 03.1) into 03.4) yields the following general resuk for the mean count within the

signal bin

n,'=exp(-2ra 2 dtexp- dt's(t') + dts(t)exp- dt's(t')

(m-l)r_ k t-r,_ t_ k t-rd

03.6)

where we have assumed that the signal pulse is confined to the interval t_ < t < te which is totally

contained within the mth range bin.

The cell contrast in this very general case is now given by

I7_ n t ' _ 1 2

Cd Hb ' tl b (m-l)r b
L e-_a t_ L t-_a

03.7)

where the subscript d stands for dead time. It can be easily seen that 03.5) through 03.7)

approach the proper values in the limit as xa---_O,ie. nb'-->nb and nt'--->nb+n_and that C approaches
the value given by Eq. (7a) in the main text.
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B.3 SPECIAL CASE: 'l:b>l;d ::_=

If the receiver dead time is longer than the surface return waveform but shorter than the range bin

(rb > ra>r_ =tz-tl), the second integral in (B.7) can be evaluated by a change of variable, i.e.

t t

y = f dt's(t')= fdt's(,') (B.8a)
f- r d t I

so that

r ]!f ats(t)exp|-f dt's(t') = dye -y = l-e-"
tl L tl

(B.8b)

To evaluate the first integral in (B.7), we first break the range bin up into four time segments (l-
before the signal pulse; 2-during the pulse; 3-immediately after the pulse while the detector or

receiver is recovering; and 4- following detector or receiver recovery). We obtain

2 _ dt - dt's(t')
(m-Or, L t-rd

,, Ft= -,.- Ia,oxp/-Ia,'s(,')
tt L tl

+ _ dt - dt's(t')
t2 L t - r d

(B.9)

Using integration by parts [Selby, 1969], we can write for the first integral in (B.9)

- t, ) + f dtts(t)exp_dtexPl-Idt's(t' ) =(,2e-" - dt's(t')
r_ L _ t, (I3.10)

=_(t2e-'-t,)+_-(1-e-')=_(l+e-" )

where we have used the fact that the signal retum is a sharp spike within the range bin to pull the

factor of t out of the integral in (B. 10), leaving us with the integral in (B.8b).

We can perform a similar analysis for the second integral in (B.9) to obtain

actexp- _ dt's(t') = Ira + t2 (1- e-" )I-
t2 L t-_.,

dtts(t-rd)ex p - dt's(t')
t 2 t_'f d 03.11)
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Substituting(B.10)and(I3.11)into(]3.9)andmsertmg the result along with (B8.b) into (8.7)

gives the following simple expression for the signal cell contrast in the presence of a detector or
receiver dead time

C,_ :l+(1-e-" .rib rb
(8.12)
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FIGURECAPTIONS:

Figure1: Normalized surface return rate (fs/f_,.O as a function of mean signal strength, n,, and
three detector thresholds, nt = I, 2, and 3 photoelectrons (pe). Conventional laser altimeters

typically operate with high signal strengths and high noise thresholds (lower right of the

asymptotic curve) and therefore make inefficient use of the available laser photons whereas
photon-counting microaltimeters operate on the most efficient nt=l curve at low mean signal

counts (n_ _<1).

Figure 2: Principles behind a correlation range receiver. The range gate is divided into equal

duration range bins, and several consecutive laser fires are combined to form aflame. The 2-D

area bounded by the range bin and frame dividing lines is a cell. Multiple frames form a
superframe. Photon counts are accumulated within each cell and, if the total count K exceeds the

frame threshold Ko_, the cell is identified as signal; otherwise it is tentatively identified as noise.

A valid trajecto_ is one in which the signal cell is not displaced by more than one range bin in

consecutive frames. Applying this criteria in algorithms which look forward and backward in
time and N of M techniques can help recover lost or missing data in near real time.

Figure 3: Definitions of angles used in the solar background noise analysis.

Figure 4: Plots of (a) the Differential Cell Count normalized to M, (1o)the probability of corr_-tly

identifying the signal cell in a frame, and (c) the mean number of cells incorrectly identified as

signal within a frame as a function of the mean signal counts in a frame, N_, for Nb,n = 500 and
four contrast values, C = 2 (solid), 3 (dot), 5 (dash), and 10 (dot-dash). Note that different

combinations of C and N_ give essentially equivalent performance, but systems with low contrast

require more signal counts per frame (longer frame times) to achieve the same level of
discrimination.

Figure 5: Block diagram of the developmental NASA Airbome Multi-kilohertz Microlaser
Altimeter Instrument.

Figure 6: Analysis summary of NASA Airborne Multi-kilohertz Microlaser Altimeter Instrument

operating at a 10 kHz rate from a cruise altitude of 40,000 t_ (12 km): (a) Maximum surface

sampling rate vs power-aperture product; Co) signal cell contrast vs frame interval; (c) optimum
frame threshold vs frame interval; (d) normalized differential cell count vs frame interval; (e)

probability of successfully detecting signal cell vs frame interval; and (f) mean number of falsely
acquired noise cells per frame vs frame interval. The three curves in each figure correspond to

different surface reflectances, i.e. p =1 (solid), 0.15 (dot), 0.10 (dash).

Figure 7: Microaltimeter performance over simulated barren terrain containing a 50 m cliff: (a)

coarse scale showing the full 4 microsecond range gate; (b) fine scale showing points tentatively
identified as terrain by the signal extraction algorithm over a short segment on the cliff.

Figure 8: The following Mars microaltimeter parameters are plotted versus the mean signal count

per laser fire, ns: (a) single shot probability of detection for 1 pe threshold; (b) requirod laser fire
rate to achieve 3 kHz sampling rate from worst case surface; (c) receive telescope diameter; (d)

transmitted laser energy; (e) average transmitter power; and (0 the Power-Aperture Product. The
four curves in (c) through (e) correspond to different assumed contrast values, i.e. C =2 (solid), 3

(dot), 5(dash), and 10 (dot-dash). For each contrast, the corresponding value of the mean signal
count per frame, N_, is given by Table 5 to ensure equivalent performance. In (0, all four curves

overlap.
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Figure 9: Block diagram of an all-digital modulo timer integrated with a 6x6 micro-APD array.
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MicroAItimeter Performance Simulations
Simulated rough terrain with 50m cliff
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